Towards Better Understanding the Clothing Fashion Styles: A Multimodal Deep Learning Approach
نویسندگان
چکیده
In this paper, we aim to better understand the clothing fashion styles. There remain two challenges for us: 1) how to quantitatively describe the fashion styles of various clothing, 2) how to model the subtle relationship between visual features and fashion styles, especially considering the clothing collocations. Using the words that people usually use to describe clothing fashion styles on shopping websites, we build a Fashion Semantic Space (FSS) based on Kobayashi’s aesthetics theory to describe clothing fashion styles quantitatively and universally. Then we propose a novel fashion-oriented multimodal deep learning based model, Bimodal Correlative Deep Autoencoder (BCDA), to capture the internal correlation in clothing collocations. Employing the benchmark dataset we build with 32133 full-body fashion show images, we use BCDA to map the visual features to the FSS. The experiment results indicate that our model outperforms (+13% in terms of MSE) several alternative baselines, confirming that our model can better understand the clothing fashion styles. To further demonstrate the advantages of our model, we conduct some interesting case studies, including fashion trends analyses of brands, clothing collocation recommendation, etc.
منابع مشابه
Fast Fashion Guided Clothing Image Retrieval: Delving Deeper into What Feature Makes Fashion
Clothing fashion represents human’s aesthetic appreciation towards their outfits and reflects the development status of society, humanitarian and economics. Modelling fashion via machine is extremely difficult due to the fact that fashion is too abstract to be efficiently described by machine. In this paper, we delve into two fashion related problems: what type of image feature best describes f...
متن کاملLearning styles and approaches to learning among medical undergraduates and postgraduates
BACKGROUND The challenge of imparting a large amount of knowledge within a limited time period in a way it is retained, remembered and effectively interpreted by a student is considerable. This has resulted in crucial changes in the field of medical education, with a shift from didactic teacher centered and subject based teaching to the use of interactive, problem based, student centered learni...
متن کاملPrediction of Iranian EFL Learners’ Learning Approaches Through Their Teachers’ Narrative Intelligence and Teaching Styles: A Structural Equation Modelling Analysis
It goes without saying that there are many influential factors affecting the success of any learning experience, and teachers are definitely among the significant factors influencing the process of teaching and learning. In this respect, the present study sought to investigate the prediction of Iranian English as a Foreign Language (EFL) learners' learning approaches through their teachers’ nar...
متن کاملStreetStyle: Exploring world-wide clothing styles from millions of photos
Each day billions of photographs are uploaded to photo-sharing services and social media platforms. These images are packed with information about how people live around the world. In this paper we exploit this rich trove of data to understand fashion and style trends worldwide. We present a framework for visual discovery at scale, analyzing clothing and fashion across millions of images of peo...
متن کاملFusing Hierarchical Convolutional Features for Human Body Segmentation and Clothing Fashion Classification
The clothing fashion reflects the common aesthetics that people share with each other in dressing. To recognize the fashion time of a clothing is meaningful for both an individual and the industry. In this paper, under the assumption that the clothing fashion changes year by year, the fashiontime recognition problem is mapped into a clothing-fashion classification problem. Specifically, a novel...
متن کامل